MATERIALS SAFETY DATA SHEET (MSDS)

Ethanol \((C_2H_5OH)\)

<table>
<thead>
<tr>
<th>MSDS Number</th>
<th>NCP/P/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version number</td>
<td>Version 3.0</td>
</tr>
<tr>
<td>Date issued</td>
<td>10th March 2014</td>
</tr>
<tr>
<td>Next Review date</td>
<td>March 2016</td>
</tr>
<tr>
<td>Page No.</td>
<td>Page 1 of 9</td>
</tr>
</tbody>
</table>

COMPANY DETAILS

Name: NCP Alcohols

Address: 121 Sea Cow lake Road, Durban, 4001, South Africa

Emergency telephone No.: +27 (31) 579 2004

Telephone: +27 (31) 560 1111

Fax: +27 (31) 579 2776

1. Product and Company Identification

Trade name: Ethanol (Industrial, Absolute or Anhydrous, Rum, Light Spirits, Extra Neutral Potable, Neutral Potable, Rectified Extra Neutral and High Purity Extra Neutral Potable Alcohol)

Chemical abstract No.: 64-17-5

Molecular Mass: 46.08

Chemical family: Aliphatic Alcohol

NIOSH No.: KQ 6300000

Chemical name: Ethanol

Hazchem code: 2(S) E; 3(S) E

Synonyms: Ethyl Alcohol, See Trade name

UN No.: 1170

2. Composition:

Hazardous components: Ethyl Alcohol \((75.0 – 99.9\%)/v,)

EEC classification: 200 – 578 – 6

R Phrases: R11 (Highly Flammable)

3. Hazards Identification:

Main Hazard: Harmful if swallowed or inhaled. Possible aspiration hazard if swallowed (can enter lungs and cause damage). May be irritating to the skin, eyes and respiratory tract. Over exposure may cause CNS depression. Possible reproductive hazard.

Flammability: Flash Point 12°C. Extremely flammable liquid (R11). Ignition temperature 425°C.

Chemical Hazard: Ethanol is a flammable liquid whose vapours can form ignitable and explosive mixtures with air at normal room temperatures. Thus, an aqueous mixture containing 30% ethanol can produce a flammable mixture of vapour and air at 29°C, and even one containing only 5% alcohol can produce a flammable mixture at 62°C. Ethanol reacts vigorously with a wide range of oxidizing materials and other chemicals, e.g. Disulphuryl Difluoride, Silver Nitrate, Bromine Pentafluoride, Potassium Perchlorate, Nitrosyl Perchlorate, Chromyl Chloride, Chloryl Perchloride, Uranyl Perchlorate, Chromium Trioxide, Fluorine Nitrate, Dioxygen Difluoride, Uranium Hexafluoride, Iodine Heptafluoride, Tetrachlorosilane, Permanganic acid, Nitric acid [the nitric acid fizz reaction used formally for cleaning laboratory glassware should not be used], Hydrogen Peroxide, Peroxodisulphuric acid, Potassium Dioxide, Sodium Peroxide, Potassium Permanganate, Ruthenium (VIII) Oxide, Platinum, Potassium, Potassium tert – Butoxide, Silver Oxide and Sodium.
Biological Hazard: Ethanol is rapidly oxidized in the body to acetaldehyde, then to acetate, and finally to carbon dioxide and water; un-oxidized alcohol is excreted in the urine and expired in the air.\(^8,9\)

Reproductive hazard: Some evidence of foetotoxicity\(^{26-28}\) and teratogenicity\(^{29}\) has been observed in experimental animals treated with high doses of ethanol during gestation. Alcohol may induce spontaneous abortions, may impair fertility, may cause harm to the unborn child and may cause harm to breast fed babies. The reproductive hazards have been determined after repeated excessive consumption of ethanol; these effects are not likely to occur through exposure below the Occupational Exposure Limits in the working environment.

Health effects – eyes: Moderately irritating. Exposure to liquid, vapours, fumes or mist may cause irritation. Direct contact may cause irritation, redness, pain, corneal inflammation and possible corneal damage.

Health effects – skin: Repeated or prolonged contact may result in defatting, redness, pain, itching, inflammation, cracking and possible secondary infection. Repeated skin contact may result in allergic skin reaction in a very small proportion of individuals.

Health effects – ingestion: Large doses lead to alcohol poisoning while repeated ingestion can lead to alcoholism. Alcohol abuse and dependence can have a profound effect on work performance and tendency to accidents at work.\(^{11-13}\) The presence of denaturants, e.g. Methanol, pyridines, and benzene in industrial alcohol greatly increase the toxicity on ingestion. Ethanol drinking is also suspected of increasing the toxic effect of other chemicals encountered in the laboratory and the workplace by inhibition of their metabolism or excretion\(^{14}\); e.g. 1, 1, 1-Trichloroethane\(^{15}\), Xylene, Trichloroethylene and Dimethylformamide\(^{16}\), Benzene\(^{17}\) and Lead.\(^{18,19}\) May cause harmful central nervous system effects. Effects may include excitation, euphoria, headache, dizziness, drowsiness, blurred vision, fatigue, tremors, convulsions, loss of consciousness, coma, respiratory arrest and death. Severe acute intoxication may cause Hypoglycaemia, Hypothermia and extensor rigidity. Prolonged or frequent contact may result in liver injury.

Health effects – inhalation: Intoxicating if continuously inhaled for a long period of time. Occupational Exposure Limits (8-hour reference period) 1000ppm (1900mg/m\(^3\)).\(^{30}\)

Carcinogenicity: Long-term consumption of alcoholic beverages demonstrates an increase in the occurrence of breast cancer and colorectal cancer. Malignant tumours of the oral cavity, Pharynx, Larynx, Oesophagus and Liver is also causally related to the consumption of alcoholic beverages.\(^{31}\) Some studies\(^{20,21}\) have shown an excess incidence of laryngeal cancer over the expected from exposure to synthetic alcohol, with Diethyl Sulphate probably being the causative agent.

Mutagenicity: Ethanol has been found to be non-mutagenic in the Salmonella microsome test,\(^{22}\) but some transient mutagenic changes have been observed in male, but not female, mice treated with rather large doses.\(^{23-25}\) Ethanol is mutagenic in man via its first metabolite, Acetaldehyde. Acetaldehyde induces chromosomal aberrations, sister-chromatid exchanges and cross-links between DNA strands.\(^{32}\)

Neurotoxicity: Over exposure may cause Central Nervous System (CNS) depression.

4. First – aid Measures:

Product in eye: Flush immediately with water or neutral saline solution for at least 15 minutes. Seek medical attention.

Product on skin: Remove contaminated clothing and rinse contaminated area with soap and water. If skin irritation persists seek medical attention.
Materials Safety Data Sheet (MSDS)

Ethanol (C₂H₅OH)

<table>
<thead>
<tr>
<th>MSDS Number</th>
<th>NCP/P/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version number</td>
<td>Version 3.0</td>
</tr>
<tr>
<td>Date issued</td>
<td>10th March 2014</td>
</tr>
<tr>
<td>Next Review date</td>
<td>March 2016</td>
</tr>
<tr>
<td>Page No.</td>
<td>Page 3 of 9</td>
</tr>
</tbody>
</table>

5. Fire – fighting Measures:

Extinguishing media: Use dry chemical, alcohol foam or carbon dioxide to extinguish fire. Water may be ineffective but should be used to cool fire-exposed containers, structures and to protect personnel. If leak or spill has not ignited, ventilate area and use water spray to disperse gas or vapour and to protect personnel attempting to stop a leak. Use water to dilute spills and to flush them away from sources of ignition. Do not flush down public sewers or other drainage systems.

Special hazards: Flammable

- Flash point: 12 - 16°C
- Flammability/explosion limits: 3, 3 – 19%/v

Dangerous when exposed to heat or flame. Vapours form flammable or explosive mixtures with air at room temperature. Vapour or gas may spread to distant ignition sources and flash back. Run-off to sewer may cause fire or explosion hazard. Containers may explode in heat of fire. Vapours may concentrate in confined areas. Irritating or toxic substances may be emitted upon thermal decomposition.

Protective clothing: Exposed fire fighters should wear approved self-contained breathing apparatus with full face mask and full protective equipment.

6. Accidental Release Measures:

Personal precautions: Protective clothing should be worn to prevent excessive skin contact.

Environmental precautions: Prevent liquid entering sewers. Do not allow to enter surface waters, storm drains, etc.

Small spills: Take immediate steps to stop and contain the spill. Caution should be excised regarding personnel safety and exposure to be spilled material. Eliminate all sources of ignition and wear protective clothing. Absorb small spills onto paper towels and evaporate in a safe place e.g. in a fume hood. Flush the contaminated area with plenty of water.

Large spills: Stop leak if you can do it without risk. Contact your local fire department. Eliminate all sources of ignition and static; restrict access to area until completion of clean-up procedure. Wear adequate protective equipment, use self-contained breathing apparatus in confined poorly-ventilated areas. Large quantities should be absorbed on to sand, vermiculite or an equivalent absorbent material and removed to a safe area for disposal. Flush the contaminated area with plenty of water. Incineration is the recommended method of disposal.
7. Handling and Storage:

Suitable material: Ethanol is not corrosive to metals and may be stored in stainless steel, mild steel or aluminium containers. Ethanol may also be stored in HDPE containers.

Handling/storage precautions: Ground lines and equipment used during transfer to reduce the possibility of static spark-initiated fire or explosion. Store in approved flammable liquid storage containers. Keep containers tightly closed as this material readily absorbs moisture. Store away from incompatible materials. Store in a cool, dry well-ventilated area away from sparks, flames and other sources of ignition. Eliminate all sources of static electricity. Use non-sparking electrical and ventilation systems. Storage criteria: Flammable Liquid store.

8. Exposure Control / Personal Protection:

Occupational exposure limits:

<table>
<thead>
<tr>
<th>Country</th>
<th>8 Hour – TWA Hygiene Limit</th>
<th>STEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>US (OSHA)</td>
<td>1900 mg/m³ (1000ppm)</td>
<td>None</td>
</tr>
<tr>
<td>US (ACGIH)</td>
<td>1900 mg/m³ (1000ppm)</td>
<td>None</td>
</tr>
<tr>
<td>Germany (MAK)*</td>
<td>960 mg/m³ (500ppm)</td>
<td>Peak limit cat. II,1</td>
</tr>
<tr>
<td>UK (OES)</td>
<td>1920 mg/m³ (1000ppm)</td>
<td>None</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>960 mg/m³ (500ppm)</td>
<td>1920 mg/m³ (1000ppm) (30 min, 4x per shift)</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>1000 mg/m³</td>
<td>3000 mg/m³</td>
</tr>
</tbody>
</table>

Engineering control measures: Engineering control methods to reduce hazardous exposures are preferred. General methods include mechanical ventilation (dilution and local exhaust), process or personnel enclosure, control of process conditions and process modification (e.g. substitution of a less hazardous material). Administrative controls and personal protective equipment may also be required. Use a non-sparking, grounded ventilation system separate from other exhaust ventilation systems. Exhaust directly to the outside. Supply sufficient replacement air to make up for air removed by exhaust system.

Personal protection – respiratory: If exposure limits are exceeded or if irritation is experienced, an approved respirator for organic vapours is generally acceptable. For high concentrations and for oxygen-deficient atmospheres, use approved air-supplied respirator. Full respiratory protection should be readily available in case of spillage.

Personal protection – hand: Rubber (Butyl) or neoprene gloves are recommended.

Personal protection – eye: Prevent eye contact with this material. Wear chemical tight safety goggles where eye exposure is reasonably probable. Provide an eyewash station immediately accessible to the work area. Contact lenses should not be worn when working with this chemical.

Personal protection – skin: Avoid skin contact. When working with this substance, wear appropriate chemical protective gloves. Depending upon conditions of use, additional protection may be necessary such as face shield, apron, etc.

Other protection: Provide a safety shower immediately accessible to the work area.
M01: Physical and Chemical Properties:

- **Appearance**: Colourless, volatile liquid
- **Odour**: Characteristic pleasant odour
- **pH**: Neutral
- **Boiling point**: 78.2°C - 78.5°C
- **Melting point**: -130°C to -112°C
- **Flash point**: 12°C - 16°C
- **Flammability**: 3, 3 – 19% v/v
- **Auto-flammability**: 363°C
- **Explosive properties**: Vapours can form explosive mixtures with air. All sources of ignition or static must be excluded.
- **Oxidizing properties**: None
- **Vapour pressure**: 59 mm Hg at 20°C
- **Density**: 785.3 kg/m³ – 809 kg/m³ at 25°C
- **Solubility – water**: Miscible with water in all proportions
- **Solubility – solvent**: Miscible with ether, methanol, chloroform and acetone
- **Solubility – coefficient**: 1100 @ 37°C

M02: Stability and Reactivity:

- **Condition to avoid**: Overheating, flames, sources of ignition or static electricity. Oxidizing agents. Vapour/ air mixtures are explosive.
- **Incompatible materials**: See section 3 (chemical hazards).
- **Hazardous decomposition products**: Incomplete combustion can generate carbon monoxide and carbon dioxide.
11. Toxicological Information:

Acute toxicity
- Acute oral toxicity Ethanol: LD$_{50}$ rat: 7,060 mg/kg; literature value
- Acute inhalation toxicity Ethanol: LC$_{50}$ rat: 66,000 mg/l; literature value; 4 h
- Acute dermal toxicity Ethanol: LD$_{L}$o rabbit: 20,000 mg/kg; literature value

NOAEL - 2400 mg/kg (2%) - for rats
LOAEL – 3600 mg/kg (3%) - for rats

Skin and eye contact: Redness, pain (refer to Section 3 for further information)

Chronic toxicity: Refer to Section 3

Carcinogenicity: Refer to Section 3

Mutagenicity: Refer to Section 3

Neurotoxicity: Refer to Section 3

Reproductive hazards: Refer to Section 3

12. Ecological Information:

Aquatic toxicity – fish: In high concentration it harms fish and plankton; LC$_{50}$ (fish, 96 hours) – 15.3 mg/L (Pimephales promelas)

Aquatic toxicity – daphnia: Threshold for deleterious effects in small crustaceans upwards of 7.800 mg/l; EC$_{50}$ (Daphnia, 48 hours) – 5012 mg/L (Ceriodaphnia dubia)

Aquatic toxicity – algae: Toxic threshold concentration: *Pseudomonas putida* upwards of 6.500mg/l, *Scenedesmus quadricauda* upwards of 5.000mg/l, *Microcystis aeruginosa* upwards of 1.450ml/L

IC$_{50}$ (algae, 72 hours) – 275 mg/L

Biodegradability: This product is readily biodegradable. Ethanol is widely recognized as being readily biodegradable in the environment as it is both a metabolite of and nutrient for microbes. There are no persistent bioaccumulation

Bio – accumulation: This product is not expected to bio accumulate through the food chains in the environment. The very low log KOW of ~0.31 is indicative of a low bioaccumulation potential.

Mobility: This product is likely to volatilize rapidly into the air because of its high vapour pressure. The product is poorly absorbed onto soils or sediments. Adsorption coefficient (K$_{OC}$) solid phase/liquid phase = 1 (highly mobile)

German wgk: 1 (low hazard to water)
13. Disposal Considerations:

Disposal methods: Only under conditions approved by local authorization. See also Section 6.

Disposal of packaging: Empty containers may contain flammable and hazardous residues. Always obey hazard warnings.

14. Transport Information:

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN No</td>
<td>1170</td>
</tr>
<tr>
<td>Substance Identity No</td>
<td>UN 1170</td>
</tr>
<tr>
<td>ADR/RID class</td>
<td>3</td>
</tr>
<tr>
<td>ADR/RID item No</td>
<td>3(b)</td>
</tr>
<tr>
<td>ADR/RID hazard identity No</td>
<td>3</td>
</tr>
<tr>
<td>IMDG – shipping name</td>
<td>Ethanol</td>
</tr>
<tr>
<td>IMDG – class</td>
<td>3.2</td>
</tr>
<tr>
<td>IMDG – packaging group</td>
<td>II</td>
</tr>
<tr>
<td>IMDG – marine pollutant</td>
<td>Not a marine pollutant</td>
</tr>
<tr>
<td>IMDG – EMS No</td>
<td>F-E, S-D</td>
</tr>
<tr>
<td>IMDG – MFAG table No</td>
<td>3074</td>
</tr>
<tr>
<td>IATA – shipping name</td>
<td>Ethanol Solutions</td>
</tr>
<tr>
<td>IATA – class</td>
<td>3</td>
</tr>
<tr>
<td>IATA – subsidiary risk(s)</td>
<td>Flammable liquid</td>
</tr>
<tr>
<td>ADNR – class</td>
<td>UN –No.:1170; Class 3, Packaging Group II</td>
</tr>
<tr>
<td>UK – description</td>
<td>Not available</td>
</tr>
<tr>
<td>UK- emergency action class</td>
<td>Not available</td>
</tr>
<tr>
<td>UK – classification</td>
<td>Not available</td>
</tr>
<tr>
<td>Tremcard No</td>
<td>1170</td>
</tr>
</tbody>
</table>
MATERIALS SAFETY DATA SHEET (MSDS)

Ethanol \((C_2H_5OH)\)

<table>
<thead>
<tr>
<th>MSDS Number</th>
<th>NCP/P/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version number</td>
<td>Version 3.0</td>
</tr>
<tr>
<td>Date issued</td>
<td>10(^{th}) March 2014</td>
</tr>
<tr>
<td>Next Review date</td>
<td>March 2016</td>
</tr>
<tr>
<td>Page No.</td>
<td>Page 8 of 9</td>
</tr>
</tbody>
</table>

15. Regulatory Information:

<table>
<thead>
<tr>
<th>EEC hazard classification</th>
<th>200 – 578 - 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk phases</td>
<td>R11</td>
</tr>
<tr>
<td>Safety phases</td>
<td>S2, S7, S9, S16, S33</td>
</tr>
<tr>
<td>National legislation</td>
<td>Hazardous Substances Act 15 of 1973 and Regulations</td>
</tr>
<tr>
<td></td>
<td>Occupational Health and Safety Act 85 of 1993 (Hazardous Chemical Substances Regulations)</td>
</tr>
</tbody>
</table>

16. Sources of Information

1. Chemical Safety Data Sheets Volume 1 - Royal Society of Chemistry Information Services (Numbers in parenthesis refer to this article, see below).
3. Canadian Centre for Occupational Health and Safety. Record No. 516022

17. Other Information

1. The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall NCP Alcohols be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if NCP Alcohols has been advised of the possibility of such damages.

2. This product may be denatured upon request with small quantities (≤ 5%\(^{v/v}\)) of one or more of the following denaturants: Menthol (CAS No: 2216-51-5), Denatonium Benzoate (Bitrix) (CAS No:3734-33-6), Propylene Glycol (CAS No: 57-55-6), Iso-propyl alcohol (CAS No:67-63-0), Methanol (CAS No: 67-56-1), Wood Naphtha (CAS No: 67-56-1), Di-ethyl Phthalate (DEP) (CAS No: 84-66-2), Hibitane (CAS No: 82432-16-4) or Butanol (CAS No: 71-36-3) or formulations as per the Specialised Denaturants list in the Industrial Solvents handbook.

18. Change Details

- **Revision 2.0**
 - Changed MSDS Format
 - Updated contents to include current information available

- **Revision 3.0**
 - Include CAS numbers for denaturants
2. Bretherick, L. Handbook of Reactive Chemical Hazards (3rd edition)
4. Laboratory Hazards Bulletin 1982, 584
5. Laboratory Hazards Bulletin 1983, 113
11. Encyclopaedia of Occupational Health & Safety ILO. Ethyl Alcohol and Alcoholism
23. Bader, F.M.; R.S. Nature 1975, 253, 134
30. www_static.shell.com/ethanol_CAS_64_1_5_gb_stl1.pdf
33. Toxicity and risks induced by Occupational Exposure to chemical compounds Pg.259.